

<Insert Picture Here>

Linux Data Integrity
Martin K. Petersen
Consulting Software Developer, Linux Engineering

<Insert Picture Here>

Topics

• DIF/DIX
• Data Corruption
• T10 DIF
• Data Integrity Extensions

• Linux & Data Integrity
• Block layer
• Filesystems
• User application Interfaces

DIF, DIX & Data Integrity

Data Corruption

• Tendency to focus on latent sector corruption inside
disk drives:
• Media developing defects
• Head misses

• However, corruption can - and often does - happen
while data is in flight
• Modern transports like FC and SAS have CRC on the wire
• Which leaves admin / library / kernel / firmware errors
• Examples: Bad buffer pointers, missing or misdirected writes

• Industry demand for end-to-end protection
• Oracle HARD technology is widely deployed
• Other databases and mission-critical business apps
• Nearline/archival storage wants belt and suspenders

Data Corruption - Oracle HARD

• Hardware Assisted Resilient Data
• Each database block has an internal checksum
• Each database block also has an internal LBA check
• Shipping since ~2001 on EMC/Hitachi/IBM Shark/NetApp

• Pro
• Front-end of disk array can verify that Oracle logical blocks

are intact
• And in case of failure reject I/O on a logical block boundary

• Contra
• Difficult to administer
• Not all database I/O has a checksum
• Proprietary and Oracle-specific ➔ Limited adoption
• Expensive add-on, only very high-end arrays support it

Data Corruption - DIF/DIX

• DIF/DIX are orthogonal to logical block checksums
• btrfs/ZFS/Oracle database checksums are here to stay
• Logical block checksums are used for detection of corrupted

data at READ time
• ... which could be months later ➔ Original, good buffer is lost
• Logical block checksumming is a way to detect latent sector

corruption

• DIF/DIX:
• are about preventing in-flight corruption
• tackle content corruption errors & data misplacement errors
• allow us to detect problems before the original buffer is

erased from memory
• and before bad data ends up being stored on disk
• Networks have had checksums for years. This is about time.

Disk Drives

• Most disk drives use 512-byte sectors
• A sector is the smallest atomic unit the drive can

access
• Each sector is protected by a proprietary ECC internal

to the drive firmware
• Enterprise drives (Parallel SCSI/SAS/FC) support

520/528 byte “fat” sectors
• Sector sizes that are not a multiple of 512 bytes have

seen limited use because operating systems deal with
everything in units of 512 bytes

• RAID arrays make extensive use of fat sectors

Normal I/O

T10 Data Integrity Field

• Standardizes those extra 8 bytes
• Prevents content corruption and misplacement errors
• Only protects path between HBA and storage device
• Protection information is interleaved with data on the

wire, i.e. effectively 520-byte sectors
• SATA T13/External Path Protection proposal uses

same protection information format
• SCSI tape proposal in the pipeline

T10 Data Integrity Field I/O

Data Integrity Extensions

• T10 DIF was a ratified, existing and open standard
• Attempt to extend DIF all the way up to the

application, enabling true end-to-end data integrity
protection

• Essentially a set of meta-commands for SCSI/SAS/FC
controllers

• The Data Integrity Extensions:
• Enable DMA transfer of protection information to and from

host memory
• Separate data and protection information buffers to avoid

inefficient 512+8+512+8+512+8 scatter-gather lists
• Provide a set of commands that tell HBA how to handle I/O:

• Generate, strip, pass, convert and verify

DIX Operations

Data Integrity Extensions + DIF I/O

Protection Envelopes

Data Integrity Extensions + T10 DIF

• Proof of concept last summer
• Oracle DB, Linux 2.6.18, Emulex HBA, LSI array, Seagate

drives
• Error injection and recovery
• Showed Oracle DB crash and burn without DIX+DIF

• Product availability
• Some hardware shipping
• Product announcements soon

SNIA Data Integrity Technical
Workgroup

• TWG just dropped provisional status
• Aims to broaden participation
• Aims to standardize data integrity terminology

• Think RAID levels

• Aims to standardize OS-agnostic API and/or common
methods for applications to interact with integrity
metadata

• Companies at first face-2-face
• Emulex, Oracle, LSI, Seagate, Qlogic, Brocade, EMC, PMC

Sierra, HP, Teradata, IBM, Sun, Microsoft, Symantec

Linux & Data Integrity

Linux SCSI Layer

• Storage device discovery
• DIF enabled?
• Which protection type?
• Application tag available (ATO bit)?
• Protects path between initiator and target. CDB

prepared accordingly.
• HBA registers DIX capability

• Checksum formats supported
• DIF and DIX modes supported
• Allows exchange of protection information
• SCSI requests will be submitted with a DIX

operation telling HBA how to handle I/O

Linux Block Layer

• Basic I/O container extended with a separate scatter-
gather list describing protection buffer

• Merge and splitting constraints

• Each block device has an integrity profile describing
protection information must be prepared or verified
(guard type, sector size, etc.)

• Filesystems can issue requests with protection
information attached

Linux Filesystems

• Can prepare protection information for WRITE
commands and verify it for READs

• Details of the format are opaque to filesystem.
Callback functions used to prepare and verify.

• Filesystems can use interleaved application tag space
to implement checksumming without changing on-disk
format

• Another possibility is to use the application tag space
for things that will aid the recovery process (back
pointers, inode numbers, etc.)

User Application Interfaces

• Any layer can add PI if not already present

• Owner of PI is responsible for re-driving failed
requests

• Filesystem/block layer transparently protects and
verifies unprotected application I/O

• Most applications are not block oriented but deal with
byte streams

• UNIX API poses some challenges (memory mapped I/
O)

Wouldn't it be nice if...

Our UNIX Heritage

• Then:
• cat foo | frob | mangle > bar
• Applications were short lived
• -EIO meant that the pipeline broke and operator had to fix it
• Input easily reproducible by restarting pipeline

• Now:
• Oracle, mysqld, OpenOffice.org, firefox, etc.
• Applications run forever
• -EIO never gets to most applications thanks to buffered writes
• Data mainly comes from user input and the network, often not

reproducible
• But we're still using the old API

Integrity Aware APIs

• POSIX asynchronous I/O interface
• Not many applications use it
• Linux implements POSIX aio poorly
• Enables I/O completion status without resorting to blocking
• Could potentially be augmented with a protection buffer

• Oracle ASM
• Oracle's own swiss army knife I/O submission interface
• Works with DIF/DIX today

• Generic interface in progress
• Will allow normal applications to interact with protection

information (in an opaque fashion)

• Worst case the filesystem or block layer will do the
work for you

User API vs. Data Integrity

More Info

• http://oss.oracle.com/projects/data-integrity/
• Documentation
• DIX specification
• Source code repository
• Linux 2.6.27 has all the infrastructure
• Software RAID/LVM support coming in 2.6.28

http://oss.oracle.com/projects/data-integrity/

	PowerPoint Presentation
	Title of Presentation
	Program Agenda Example
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

