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Topics

• DIF/DIX
• Data Corruption
• T10 DIF
• Data Integrity Extensions

• Linux & Data Integrity
• Block layer
• Filesystems
• User application Interfaces



DIF, DIX & Data Integrity



Data Corruption

• Tendency to focus on latent sector corruption inside 
disk drives:
• Media developing defects
• Head misses

• However, corruption can - and often does - happen 
while data is in flight
• Modern transports like FC and SAS have CRC on the wire
• Which leaves admin / library / kernel / firmware errors
• Examples: Bad buffer pointers, missing or misdirected writes

• Industry demand for end-to-end protection
• Oracle HARD technology is widely deployed
• Other databases and mission-critical business apps
• Nearline/archival storage wants belt and suspenders



Data Corruption - Oracle HARD

• Hardware Assisted Resilient Data
• Each database block has an internal checksum
• Each database block also has an internal LBA check
• Shipping since ~2001 on EMC/Hitachi/IBM Shark/NetApp

• Pro
• Front-end of disk array can verify that Oracle logical blocks 

are intact
• And in case of failure reject I/O on a logical block boundary

• Contra
• Difficult to administer
• Not all database I/O has a checksum
• Proprietary and Oracle-specific ➔ Limited adoption
• Expensive add-on, only very high-end arrays support it



Data Corruption - DIF/DIX

• DIF/DIX are orthogonal to logical block checksums
• btrfs/ZFS/Oracle database checksums are here to stay
• Logical block checksums are used for detection of corrupted 

data at READ time
• ... which could be months later ➔ Original, good buffer is lost
• Logical block checksumming is a way to detect latent sector 

corruption

• DIF/DIX:
• are about preventing in-flight corruption
• tackle content corruption errors & data misplacement errors
• allow us to detect problems before the original buffer is 

erased from memory
• and before bad data ends up being stored on disk
• Networks have had checksums for years. This is about time.



Disk Drives

• Most disk drives use 512-byte sectors
• A sector is the smallest atomic unit the drive can 

access
• Each sector is protected by a proprietary ECC internal 

to the drive firmware
• Enterprise drives (Parallel SCSI/SAS/FC) support 

520/528 byte “fat” sectors
• Sector sizes that are not a multiple of 512 bytes have 

seen limited use because operating systems deal with 
everything in units of 512 bytes

• RAID arrays make extensive use of fat sectors



Normal I/O



T10 Data Integrity Field

• Standardizes those extra 8 bytes
• Prevents content corruption and misplacement errors
• Only protects path between HBA and storage device
• Protection information is interleaved with data on the 

wire, i.e. effectively 520-byte sectors
• SATA T13/External Path Protection proposal uses 

same protection information format
• SCSI tape proposal in the pipeline



T10 Data Integrity Field I/O



Data Integrity Extensions

• T10 DIF was a ratified, existing and open standard
• Attempt to extend DIF all the way up to the 

application, enabling true end-to-end data integrity 
protection

• Essentially a set of meta-commands for SCSI/SAS/FC 
controllers

• The Data Integrity Extensions:
• Enable DMA transfer of protection information to and from 

host memory
• Separate data and protection information buffers to avoid 

inefficient 512+8+512+8+512+8 scatter-gather lists
• Provide a set of commands that tell HBA how to handle I/O:

• Generate, strip, pass, convert and verify



DIX Operations



Data Integrity Extensions + DIF I/O



Protection Envelopes



Data Integrity Extensions + T10 DIF

• Proof of concept last summer
• Oracle DB, Linux 2.6.18, Emulex HBA, LSI array, Seagate 

drives
• Error injection and recovery
• Showed Oracle DB crash and burn without DIX+DIF

• Product availability
• Some hardware shipping
• Product announcements soon



SNIA Data Integrity Technical 
Workgroup

• TWG just dropped provisional status
• Aims to broaden participation
• Aims to standardize data integrity terminology

• Think RAID levels

• Aims to standardize OS-agnostic API and/or common 
methods for applications to interact with integrity 
metadata

• Companies at first face-2-face
• Emulex, Oracle, LSI, Seagate, Qlogic, Brocade, EMC, PMC 

Sierra, HP, Teradata, IBM, Sun, Microsoft, Symantec



Linux & Data Integrity



Linux SCSI Layer

• Storage device discovery
• DIF enabled?
• Which protection type?
• Application tag available (ATO bit)?
• Protects path between initiator and target. CDB 

prepared accordingly.
• HBA registers DIX capability

• Checksum formats supported
• DIF and DIX modes supported
• Allows exchange of protection information
• SCSI requests will be submitted with a DIX 

operation telling HBA how to handle I/O



Linux Block Layer

• Basic I/O container extended with a separate scatter-
gather list describing protection buffer

• Merge and splitting constraints

• Each block device has an integrity profile describing 
protection information must be prepared or verified 
(guard type, sector size, etc.)

• Filesystems can issue requests with protection 
information attached



Linux Filesystems

• Can prepare protection information for WRITE 
commands and verify it for READs

• Details of the format are opaque to filesystem. 
Callback functions used to prepare and verify.

• Filesystems can use interleaved application tag space 
to implement checksumming without changing on-disk 
format

• Another possibility is to use the application tag space 
for things that will aid the recovery process (back 
pointers, inode numbers, etc.)



User Application Interfaces

• Any layer can add PI if not already present

• Owner of PI is responsible for re-driving failed 
requests

• Filesystem/block layer transparently protects and 
verifies unprotected application I/O

• Most applications are not block oriented but deal with 
byte streams

• UNIX API poses some challenges (memory mapped I/
O)



Wouldn't it be nice if...



Our UNIX Heritage

• Then:
• cat foo | frob | mangle > bar
• Applications were short lived
• -EIO meant that the pipeline broke and operator had to fix it
• Input easily reproducible by restarting pipeline

• Now:
• Oracle, mysqld, OpenOffice.org, firefox, etc.
• Applications run forever
• -EIO never gets to most applications thanks to buffered writes
• Data mainly comes from user input and the network, often not 

reproducible
• But we're still using the old API



Integrity Aware APIs

• POSIX asynchronous I/O interface
• Not many applications use it
• Linux implements POSIX aio poorly
• Enables I/O completion status without resorting to blocking
• Could potentially be augmented with a protection buffer

• Oracle ASM
• Oracle's own swiss army knife I/O submission interface
• Works with DIF/DIX today

• Generic interface in progress
• Will allow normal applications to interact with protection 

information (in an opaque fashion)

• Worst case the filesystem or block layer will do the 
work for you



User API vs. Data Integrity



More Info

• http://oss.oracle.com/projects/data-integrity/
• Documentation
• DIX specification
• Source code repository
• Linux 2.6.27 has all the infrastructure
• Software RAID/LVM support coming in 2.6.28

http://oss.oracle.com/projects/data-integrity/
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