

ORACLE®

Data Integrity Infrastructure for Block I/O

Martin K. Petersen Software Developer, Linux Engineering

- Data Corruption
- Industry Update (T10/T13, DIX, SNIA)
- Linux Data Integrity Infrastructure
- Future Work / Discussion

Data Corruption

- Tendency to focus on corruption while data is at rest
 - Media defects
 - Head misses
- However, corruption can happen while data is in flight
 - Modern transports like FC and SAS have CRC on the wire
 - Which leaves library / kernel / firmware errors
 - Bad buffer pointers
 - Missing or misdirected writes
- Industry demand for end to end checksumming
 - Oracle HARD is widely deployed
 - Other databases and mission-critical business apps
 - Nearline/archival storage wants belt and suspenders

Data Corruption - HARD/DIF/EPP

- Orthogonal to logical block checksumming
 - We still love you, btrfs!
 - Logical block checksumming is detected at READ time
 - ... which could be months later
 - Redundant copy may also be bad if buffer was incorrect
- This is about:
 - Proactively preventing bad data from being stored on disk
 - ... and finding out before the original buffer is erased from memory
 - Plus using the integrity metadata for forensics when logical block checksumming fails
- It's an insurance policy. Must be cheap.

T10 Data Integrity Feature (DIF)

- Between initiator and target
- IMD interleaved with data sectors on the wire
- Three protection schemes
 - All have guard tag defined
 - Type 1 reference tag is lower 32-bits of target sector
 - Type 2 reference tag is seeded in 32-byte CDB
- SATA T13/EPP uses same tuple format
- SSC tape proposal is different (guard only)

Data Integrity Extensions

ORACLE

Data Integrity Extensions

- Separate protection scatter-gather list
 - 520-byte sectors are inconvenient for the OS
 - A <512, 8, 512, 8, 512, 8, ...> scatterlist is also crappy
- DIF tuple endianness
 - Application tag must be portable across little- and big-endian systems
- Checksum conversion
 - CRC16 is somewhat slow to calculate
 - IP checksum is cheap
 - Strength is in data and integrity metadata buffer separation
 - CRC32 in Nehalem
 - Extra tags / protection schemes

DIX Operations

ORACLE

T10 DIF + Data Integrity Extensions

- Proof of concept last summer
 - Oracle DB, Linux 2.6.18, Emulex HBA, LSI array, Seagate drives
 - Error injection and recovery
- Product availability
 - Hardware shipping, firmware TBA
 - Emulex, LSI, Seagate, Hitachi

SNIA Data Integrity Technical WG

- Provisional TWG
- Aims to broaden participation
- Aims to standardize data integrity terminology
 - Think RAID levels
- Aims to standardize OS-agnostic API and/or common methods for applications to interact with integrity metadata
- Companies at first face 2 face
 - Emulex, Oracle, LSI, Seagate, Qlogic, Brocade, EMC, PMC Sierra, HP, Teradata, IBM, Sun, Microsoft, Symantec

What Is Now?

- SNIA is obviously a long-term effort
- "Verbatim" DIF exchange via DIX is pretty much good to go
- Linux infrastructure ready from block layer down
- Aiming for 2.6.26
- SCSI changes depend on block ditto

Linux Block Layer Changes

struct bio

- Integrity bio_vec + housekeeping hanging off of bio
- Submitter can attach it
- Or block layer can auto-generate on WRITE
- Block layer can verify on READ
- Integrity metadata opaque to block layer
- struct block_device
 - Has an integrity profile that gets registered by ULD
 - Layered devices must ensure all subdevices have same profile
- struct request
 - A few merging constraints
 - IMD ordering is important

SCSI Layer Changes

- Mid level
 - INQUIRY and READ CAPACITY(16) during scan
 - Extra scsi_data_buffer in scsi_cmnd
 - Integrity scatter-gather mapping
- sd.c
 - CDB prep
 - A few knobs that HBA drivers can use to select DIX operation
 - Block integrity profile registration

Future Work / Discussion

- Filesystem / page cache interface
 - Where to pin? address_space? struct page?
 - FS application tag usage
- Userland API requirements:
 - Explicit
 - mkfs/fsck accessing DIF on block device directly
 - Opaque
 - "protect this buffer"
 - Transparent
 - standard read()/write() style calls
 - mmap() => bonghit bonanza

Application / OS Challenges

More Info

- http://oss.oracle.com/projects/data-integrity/
 - Documentation
 - DIX specification
 - Patches
 - Source repository

