
Proceedings of the
Linux Symposium

July 13th–17th, 2009
Montreal, Quebec

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Programme Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

James Bottomley, Novell
Bdale Garbee, HP
Dave Jones, Red Hat
Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Alasdair Kergon, Red Hat
Matthew Wilson, rPath

Proceedings Committee

Robyn Bergeron
Chris Dukes, workfrog.com
Jonas Fonseca
John ‘Warthog9’ Hawley

With thanks to
John W. Lockhart, Red Hat

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.



I/O Topology

Martin K. Petersen
Oracle

martin.petersen@oracle.com

Abstract

The smallest atomic unit a storage device can access is
called a sector. With very few exceptions, a sector size
of 512 bytes has been akin to a mathematical constant
in the storage industry for decades. That picture is now
rapidly changing with hard drives moving to 4KB sec-
tors. Flash-based solid state drives and enterprise RAID
arrays also have alignment and block size requirements
above and beyond what we have traditionally been hon-
oring.

This paper will present a set of changes that expose the
characteristics of the underlying storage to the Linux
kernel. This information can be used by partitioning
tools and filesystem formatters to lay out data in an op-
timal fashion.

1 Disk Drives and Block Sizes

Until recently what has been commonly referred to as
sector size has been both the unit used by the program-
ming interface to address a location on disk as well as
the size used internally by the drive firmware to organize
user data.

In the never-ending quest for increased capacity, disk
drive manufacturers are now switching to a 4KB sector
size, or physical block size. This allows them to increase
yield due to less overhead per sector (see Figure 1). I.e.
more of the physical capacity can be used for user data
as opposed to sync marks, error correction and other
fields used internally by the drive firmware.

The industry migration to bigger sectors is just begin-
ning and is scheduled to complete in 2011. Enterprise
drives are expected to switch directly to 4KB sectors but
can be formatted down to 512-byte blocks at a slight loss
in user-visible capacity.

For compatibility with legacy operating systems such as
Windows XP, desktop and laptop class disks will con-
tinue to present 512-byte sectors to the operating system
despite using 4KB blocks internally. This means that we
will continue to use increments of 512 bytes to address
data on disk. In protocol parlance this is referred to as
the logical block size. We refer to a sector offset on disk
as the logical block address or LBA.

The backwards compatibility comes at a cost. If the op-
erating system submits a request smaller than 4KB, or
if the request submitted is misaligned and straddles two
physical blocks, the drive firmware will have to perform
a read-modify-write cycle. This incurs a significant per-
formance penalty as the drive will have to perform an
extra platter rotation. First the partial sector needs to
be read into a buffer, then new data added, and then the
same location will need to come back under the head to
get written.

For large sequential writes the impact of the read-
modify-write cycle is fairly small as only the first and
last physical block will be affected. However, small ran-
dom write workloads are significantly slowed down so
it is imperative to prevent misalignment.

2 Partitions

Linux normally uses 4KB filesystem blocks and conse-
quently writes smaller than the physical block size are
rare. However, we need to make sure that the filesys-
tem is layed out so that the filesystem blocks are aligned
with the physical blocks of the underlying disk. Align-
ing on a 4KB boundary may seem like a trivial task at
first but once again backwards compatibility considera-
tions mean that special care must be taken.

Traditionally Linux, like Windows, has been using the
DOS partition table format. This format defaults to
putting the first partition at sector 63 which is not on

• 235 •



236 • I/O Topology

ECC512bG S ECC512bG S ECC512bG S ECC512bG S ECC512bG S ECC512bG S ECC512bG S ECC512bG S

ECCG S 4096 bytes of data

Format Efficien
Improvement: 6-13%

Figure 1: Top line illustrates how 512-byte sectors are stored on disk: Gap, Sync & Address Mark fields, followed
by 512 bytes of data and finally an ECC. 8 sectors are required to store 4KB of user data. On the bottom line: A
drive with 4KB sectors causes much less overhead.

a 4KB boundary. And consequently all I/O to that parti-
tion would be misaligned causing a performance degra-
dation.

Because it is impossible to retroactively change Win-
dows XP to align on something other than sector 63, the
drive manufacturers instead opted to ensure that LBA 63
is aligned on the physical block size boundary. This in
turn means that the lowest naturally aligned LBA is 7.

There is no guarantee that any subsequent partitions will
be aligned on a 4KB boundary, neither from the begin-
ning of the drive, nor from the beginning of the first par-
tition. This means that drive firmware artificially align-
ing LBA 63 only helps Windows users as XP rarely uses
more than one partition. With Linux, however, the first
partition is usually used for the /boot filesystem where
performance is less important.

To make things even more complicated, enterprise class
drives are as mentioned above switching to 4KB sectors
as well. SAS and Fibre Channel drives will use 4KB
logical and physical block sizes. SATA Nearline drives
will use 4KB physical and 512-byte logical blocks. In
both cases LBA 0 will be naturally aligned, so we can
not simply assume that LBA 63 is always aligned on a
physical block boundary.

3 Alignment and Block Size Reporting

To remedy this both the SCSI and ATA protocols have
been expanded with fields that inform us of the drive’s
alignment. For SCSI drives physical block size and
alignment are reported in the READ CAPACITY(16)

command. And for ATA the same values can be found
in IDENTIFY words 106 and 209 respectively.

Until now the Linux block layer has used the queue
parameter hardsect_size to indicate the sector size
for an underlying device. In 2.6.31 this value has

been deprecated in favor of logical_block_size

and physical_block_size respectively. Both values
are exported to user applications via sysfs.

Alignment is also reported, both for the whole block de-
vice as well as for each partition. The byte offset from
the underlying drive’s physical block alignment can be
found in sysfs’ alignment_offset parameter.

These three values enable tools such as fdisk and
parted to align properties on a natural boundary, pre-
venting the read-modify-write cycle and the resulting
performance degradation.

4 Virtual Block Devices

A significant amount of Linux deployments use either
software RAID via the MD driver or logical volume
management via the DM driver. In both cases it is cru-
cial to ensure that the virtual block devices exported by
the drivers will have their first LBA naturally aligned to
the underlying storage.

Virtual block device drivers have traditionally used a
stacking function provided by the block layer to ensure
that various limits such as the sector size were compat-
ible with the underlying storage. This stacking func-
tion has been extended so that alignment and physical
block size are taken into account when devices are lay-
ered. The drivers can pass in an offset to the stacking
function to compensate for space used by their internal
superblocks.

The stacking function will make sure that all component
devices use compatible alignment and physical block
sizes. It even handles corner cases such as combining
mismatched devices for example a 512-byte sector drive
and a 4KB ditto in a RAID1 setup. In this case the align-
ment of the 512-byte drive will be scaled up to match
that of the 4KB drive.



2009 Linux Symposium • 237

As it is the case with low-level block devices, both MD
and DM will expose the block size and alignment_

offset parameters in sysfs, meaning that filesystem
utilities no longer have to have special cases for extract-
ing this type of information for MD and DM devices.
All block devices now export exactly the same set of
characteristics.

5 Performance Hints

Filesystems such as XFS are designed to be aware of
the topology of the underlying storage. When an XFS
filesystem is created on top of an MD or LVM device it
will query the device to figure out the stripe chunk size
as well as the stripe width. XFS will then lay out its
important data structures on stripe boundaries.

So far topology reporting has been done using either
ioctl calls or by wrapping LVM command line tools
and parsing their output. However, these approaches are
quite inflexible and restricted to virtual block devices.

Hardware RAID arrays have provided means to extract
this type of information as well but in a vendor-specific,
proprietary fashion. As such it has been up to the system
administrator to query the storage device and pass the
appropriate layout parameters to the mkfs utility.

To remedy this a recent addition to the SCSI Block
Commands specification permits devices to export per-
formance characteristics using a common mechanism
known as the Block Limits VPD page. Support for this
VPD has been added to the SCSI disk driver in 2.6.31
and Linux will now export the values in sysfs if the stor-
age device reports them.

The MD and DM drivers have also been updated and ex-
port their respective stripe chunk and stripe width sizes
using the same sysfs files. This means that filesystem
utilities can gain access to the device performance hints
without employing MD and DM specific code.

The first hint is minimum_io_size which is the opti-
mal request size granularity for the device, typically the
RAID chunk size. A properly aligned multiple of this
value is the preferred request size for workloads where
a high number of I/O operations per second are desired.

The other hint is optimal_io_size which corre-
sponds to the optimal unit of sustained I/O. Typically
this is the stripe width for RAID arrays. A properly
aligned multiple of this value is the preferred request
size for workloads where a high throughput is desired.

6 Solid State Drives

Hard drive performance is heavily constricted by the
speed at which the read/write heads can be moved across
the platter as well as rotational latency. Low-end disk
drives spin at 5400 or 7200rpm, whereas enterprise
drives spin at 10000 or 15000 rotations per minute, but
despite this, a contemporary drive can usually only ser-
vice between 100 and 250 IOPS (I/O operations per sec-
ond). Once the head is correctly positioned and the plat-
ter lined up, however, a modern drive can stream data
at a rate in excess of 100 MBps. Consequently, a lot of
work has gone into optimizing filesystems and the entire
I/O stack to minimize head movement and to place data
sequentially on disk.

Flash-based solid state drives are now commonplace in
the market. While they look and act like hard drives
from a programming perspective they have very differ-
ent performance characteristics. Because there are no
heads to move and no platters to rotate it is possible
to achieve a very high degree of parallelism inside the
drive. Therefore, an SSD drive has the potential to de-
liver several orders of magnitude more IOPS than a disk
drive.

Internally, flash drives often use page sizes bigger than
512 bytes to organize data, typically 4KB. That makes
them similar to harddrives with 512-byte logical, 4KB
physical block size. SSD drives can use the same ATA
protocol parameters as regular drives to communicate
their alignment and block sizes to the kernel.

7 Conclusion

Until now the Linux kernel has only been aware of one
characteristic of the underlying storage, namely the sec-
tor size. Other parameters, such as stripe size and width,
have been relegated to special case code in filesystem
utilities.

Starting with 2.6.31, the Linux kernel is now aware of
more of the hardware capabilities such as physical block
size and alignment as well as the extra performance
hints exported by some devices. All these characteristics
are exported in a common fashion regardless of whether
the device is a piece of hardware or a virtual disk ex-
ported by MD or DM. The common interface makes
it easy for partitioning and filesystem tools, as well as
mdadm and dmsetup to ensure that filesystems and data



238 • I/O Topology

are layed out in a way that ensures optimal performance
and correctness.


