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Blocks and Alignment



Blocks

• For decades we have had a common abstraction for 
block storage devices: A drive with 512b sectors

• From an addressing standpoint we have moved away 
from C/H/S to logical block addressing. The 
abstraction is now a linear address space from 0..n in 
units of 512b

• Disk drives have continued to use 512b as internal 
allocation unit aka sector aka physical block size

• However, many other storage devices ranging from 
USB sticks to enterprise arrays have been using 
internal blocks bigger than 512b for a long time



Blocks

• Because these devices did not disclose their physical 
block size we have occasionally ended up misaligning 
I/O requests

• Caches in RAID arrays have mitigated the penalty for 
submitting misaligned I/Os

• Extensions to ATA and SCSI protocols now allow 
storage devices to indicate their preferred block sizes, 
whether they contain spinning media, etc.

• SSDs and disk drives with physical blocks >512b 
exhibit significant performance penalties on 
misaligned I/Os



Disk Drives: 512-byte Physical Blocks

• Each sector on a disk is actually quite a bit bigger than 512 
bytes thanks to fields used internally by the drive firmware

• These fields help to position the read/write head, help 
ensure the right location is found and contain an ECC that 
protects the data portion of the sector

• Together these fields eat up a lot of physical storage space 
and disk drive manufacturers are pretty close to the 
physical limits as far as track density goes

• This means the only way to increase capacity is to reduce 
overhead



Disk Drives: 4096-byte Physical Blocks

• The solution is to switch to 4096b physical blocks
• Despite potentially having multiple sync fields per blocks 

and a bigger ECC there is still a substantial capacity gain
• Most operating systems use 4096b pages and filesystem 

blocks so moving away from 512b units is not a big deal
• However, legacy operating systems are hardwired to 512b 

sectors and can not use drives which expose 4096b logical 
blocks



Disk Drives: Desktop vs. Enterprise

• Desktop drives
– vendors will keep shipping ATA drives with 512b logical block 

addressing but which use 4096b physical blocks internally
– drives with 4096b blocks may happen over time

• Server drives
– three variants:

• 512b/512b legacy
• 512b/4096b emulation (nearline, SSD)
• 4096b/4096b native (RAID array drives, SSD)

• 4096b logical block size needs work in BIOS/EFI/boot 
ROM space and progress has been slow



Alignment

• The desktop class drives are only emulating 512b 
sectors. If you submit a misaligned request, the drive 
will have to resort to read-modify-write

• This means the platter has to do an extra revolution, 
inducing latency and lowering IOPS

• Vendors are working on techniques to mitigate this in 
drive firmware. Without mitigation the drop in 
performance is quite significant



Alignment: DOS Partitions

• DOS put first partition on LBA 63 by default and now we're 
stuck with it

• Consequently, laptop/desktop drives may ship formatted 
so that LBA 63 is aligned on a 4096b physical boundary to 
ease the pain for XP users

• Only the first partition will be naturally aligned. And only if 
DOS partition tables are used

• Vista and Windows 7 will align first partition on a 1MB+ε 
boundary



Linux I/O Topology

• Linux gathers block sizes and alignment information 
and exports I/O topology in a generic fashion 
regardless of device type:
– parted and fdisk make use of industry default 1MB alignment
– RAID devices report stripe size and width
– DM adjusts beginning of data in volumes
– MD reports but does not currently adjust alignment
– device stacking handled correctly
– mkfs checks and warns about misalignment

• Linux 2.6.31+, Fedora/EL6 have the right bits



Discard



Discard: Solid State Drives

• Flash cells have a limited number of write cycles
• Write amplification due to erase block size further 

shortens a drive's life
• Several approaches are being used to remedy this:

– Alignment
– Over-provisioning. Drive has more physical storage capacity 

than is reported to the OS
– Trim is used to mark regions that are no longer in use and 

which do not need wear leveling



Discard: Thin Provisioning

• Enterprise storage utilization is pretty low. I.e. only a 
fraction of the physical storage capacity is being used
– Some space is lost due to parity and spares
– Some applications require many IOPS, many spindles
– Best practice is to make bigger LUNs “just in case”...

• The solution to this is thin provisioning, the opposite 
of the SSD approach. Array tells OS it has more 
storage capacity than it actually does

• Makes it easy for the applications/virtual hosts
• Storage admin gets an email when physical disk 

space is running low



Discard

• Solid state devices and thin provisioning arrays have 
something in common:
– Both need a way to mark previously used space as unused

• Linux' discard functionality is an abstract way for 
filesystems to communicate that a block range is no 
longer needed

• At the bottom of the stack we translate the discard 
into the relevant ATA or SCSI commands

• However, things are not as simple as they seem...



Discard: 4 ways and counting...

• ATA DSM TRIM
– No command queueing
– Reasonably fast at clearing many ranges in one command

• SCSI WRITE SAME
– Two variants
– Essentially free on several arrays
– Only one block range per command

• SCSI UNMAP
– Many block ranges
– Not supported by all vendors



Discard

• One size does not fit all, and ATA and SCSI protocols 
are moving targets

• Variations in performance between devices are 
making it hard to optimize

• Three-pronged approach:
– hdparm for direct device access
– Command line-initiated scrub via filesystem ioctl
– Realtime discard filesystem mount option

• Initial discard support went into 2.6.33
• Device Mapper support is done
• Discard coalescing for TRIM and UNMAP is WIP



Data Integrity



Data Integrity

• Tendency to focus on latent sector corruption inside 
disk drives: Media defects, head misses
– btrfs block checksums enable corruption detection at READ 

time
– however, it could take months before you find out and the 

original buffer is lost

• T10 DIF and DIX:
– are about preventing in-flight corruption
– tackle content corruption errors & data misplacement errors
– allow us to detect problems when they happen, before the 

original buffer is erased from memory
– and before bad data ends up being stored on disk



Data Integrity: Normal I/O Example



• Standardizes those extra 8 bytes
• Prevents content corruption and misplacement errors
• Protects path between HBA and storage device
• Protection information is interleaved with data on the 

wire, i.e. effectively 520-byte logical blocks

Data Integrity: T10 Data Integrity Field



Data Integrity: T10 Data Integrity Field Example



Data Integrity Extensions

• We'd like to extend T10 DIF all the way up to the 
application, enabling true end-to-end data integrity 
protection

• The Data Integrity Extensions (DIX)
– Enable DMA transfer of protection information to and from 

host memory
– Separate data and protection information buffers to avoid 

inefficient 512+8+512+8+512+8 scatter-gather lists
– Provide a set of commands that tell HBA how to handle the 

I/O:
• Generate, Strip, Pass, Verify, etc.



Data Integrity Extensions + T10 DIF Example



Data Integrity

• Kernel support in 2.6.27
• Generic application API is work in progress in SNIA 

Data Integrity Technical Working Group



Conclusion

• The 512-byte sector monoculture is a thing of the past
• We are tracking and interacting with relevant storage 

standards bodies
• Other interesting technologies coming up in the solid 

state storage space

• Linux & Advanced Storage Interfaces
http://oss.oracle.com/~mkp/

http://oss.oracle.com/~mkp/
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