


<Insert Picture Here>

Linux and Advanced Storage Technologies

Martin K. Petersen <martin.petersen@oracle.com>
Consulting Software Developer, Linux Kernel Engineering



Blocks and Alignment



Blocks

• For decades we have had a common abstraction for 
block storage devices: A drive with 512b sectors

• From an addressing standpoint we have moved away 
from C/H/S to logical block addressing. The 
abstraction is now a linear address space from 0..n in 
units of 512b

• Disk drives have continued to use 512b as internal 
allocation unit aka sector aka physical block size

• However, many other storage devices ranging from 
USB sticks to enterprise arrays have been using 
internal blocks bigger than 512b for a long time



Blocks

• Because these devices did not disclose their physical 
block size we have occasionally ended up misaligning 
I/O requests

• Caches in RAID arrays have mitigated the penalty for 
submitting misaligned I/Os

• Extensions to ATA and SCSI protocols now allow 
storage devices to indicate their preferred block sizes, 
whether they contain spinning media, etc.

• SSDs and disk drives with physical blocks >512b 
exhibit significant performance penalties on 
misaligned I/Os



Disk Drives: 512-byte Physical Blocks

• Each sector on a disk is actually quite a bit bigger than 512 
bytes thanks to fields used internally by the drive firmware

• These fields help to position the read/write head, help 
ensure the right location is found and contain an ECC that 
protects the data portion of the sector

• Together these fields eat up a lot of physical storage space 
and disk drive manufacturers are pretty close to the 
physical limits as far as track density goes

• This means the only way to increase capacity is to reduce 
overhead



Disk Drives: 4096-byte Physical Blocks

• The solution is to switch to 4096b physical blocks
• Despite potentially having multiple sync fields per blocks 

and a bigger ECC there is still a substantial capacity gain
• Most operating systems use 4096b pages and filesystem 

blocks so moving away from 512b units is not a big deal
• However, legacy operating systems are hardwired to 512b 

sectors and can not use drives which expose 4096b logical 
blocks



Disk Drives: Desktop vs. Enterprise

• Desktop drives
– vendors will keep shipping ATA drives with 512b logical block 

addressing but which use 4096b physical blocks internally
– drives with 4096b blocks may happen over time

• Server drives
– three variants:

• 512b/512b legacy
• 512b/4096b emulation (nearline, SSD)
• 4096b/4096b native (RAID array drives, SSD)

• 4096b logical block size needs work in BIOS/EFI/boot 
ROM space and progress has been slow



Alignment

• The desktop class drives are only emulating 512b 
sectors. If you submit a misaligned request, the drive 
will have to resort to read-modify-write

• This means the platter has to do an extra revolution, 
inducing latency and lowering IOPS

• Vendors are working on techniques to mitigate this in 
drive firmware. Without mitigation the drop in 
performance is quite significant



Alignment: DOS Partitions

• DOS put first partition on LBA 63 by default and now we're 
stuck with it

• Consequently, laptop/desktop drives may ship formatted 
so that LBA 63 is aligned on a 4096b physical boundary to 
ease the pain for XP users

• Only the first partition will be naturally aligned. And only if 
DOS partition tables are used

• Vista and Windows 7 will align first partition on a 1MB+ε 
boundary



Linux I/O Topology

• Linux gathers block sizes and alignment information 
and exports I/O topology in a generic fashion 
regardless of device type:
– parted and fdisk make use of industry default 1MB alignment
– RAID devices report stripe size and width
– DM adjusts beginning of data in volumes
– MD reports but does not currently adjust alignment
– device stacking handled correctly
– mkfs checks and warns about misalignment

• Linux 2.6.31+, Fedora/EL6 have the right bits



Discard



Discard: Solid State Drives

• Flash cells have a limited number of write cycles
• Write amplification due to erase block size further 

shortens a drive's life
• Several approaches are being used to remedy this:

– Alignment
– Over-provisioning. Drive has more physical storage capacity 

than is reported to the OS
– Trim is used to mark regions that are no longer in use and 

which do not need wear leveling



Discard: Thin Provisioning

• Enterprise storage utilization is pretty low. I.e. only a 
fraction of the physical storage capacity is being used
– Some space is lost due to parity and spares
– Some applications require many IOPS, many spindles
– Best practice is to make bigger LUNs “just in case”...

• The solution to this is thin provisioning, the opposite 
of the SSD approach. Array tells OS it has more 
storage capacity than it actually does

• Makes it easy for the applications/virtual hosts
• Storage admin gets an email when physical disk 

space is running low



Discard

• Solid state devices and thin provisioning arrays have 
something in common:
– Both need a way to mark previously used space as unused

• Linux' discard functionality is an abstract way for 
filesystems to communicate that a block range is no 
longer needed

• At the bottom of the stack we translate the discard 
into the relevant ATA or SCSI commands

• However, things are not as simple as they seem...



Discard: 4 ways and counting...

• ATA DSM TRIM
– No command queueing
– Reasonably fast at clearing many ranges in one command

• SCSI WRITE SAME
– Two variants
– Essentially free on several arrays
– Only one block range per command

• SCSI UNMAP
– Many block ranges
– Not supported by all vendors



Discard

• One size does not fit all, and ATA and SCSI protocols 
are moving targets

• Variations in performance between devices are 
making it hard to optimize

• Three-pronged approach:
– hdparm for direct device access
– Command line-initiated scrub via filesystem ioctl
– Realtime discard filesystem mount option

• Initial discard support went into 2.6.33
• Device Mapper support is done
• Discard coalescing for TRIM and UNMAP is WIP



Data Integrity



Data Integrity

• Tendency to focus on latent sector corruption inside 
disk drives: Media defects, head misses
– btrfs block checksums enable corruption detection at READ 

time
– however, it could take months before you find out and the 

original buffer is lost

• T10 DIF and DIX:
– are about preventing in-flight corruption
– tackle content corruption errors & data misplacement errors
– allow us to detect problems when they happen, before the 

original buffer is erased from memory
– and before bad data ends up being stored on disk



Data Integrity: Normal I/O Example



• Standardizes those extra 8 bytes
• Prevents content corruption and misplacement errors
• Protects path between HBA and storage device
• Protection information is interleaved with data on the 

wire, i.e. effectively 520-byte logical blocks

Data Integrity: T10 Data Integrity Field



Data Integrity: T10 Data Integrity Field Example



Data Integrity Extensions

• We'd like to extend T10 DIF all the way up to the 
application, enabling true end-to-end data integrity 
protection

• The Data Integrity Extensions (DIX)
– Enable DMA transfer of protection information to and from 

host memory
– Separate data and protection information buffers to avoid 

inefficient 512+8+512+8+512+8 scatter-gather lists
– Provide a set of commands that tell HBA how to handle the 

I/O:
• Generate, Strip, Pass, Verify, etc.



Data Integrity Extensions + T10 DIF Example



Data Integrity

• Kernel support in 2.6.27
• Generic application API is work in progress in SNIA 

Data Integrity Technical Working Group



Conclusion

• The 512-byte sector monoculture is a thing of the past
• We are tracking and interacting with relevant storage 

standards bodies
• Other interesting technologies coming up in the solid 

state storage space

• Linux & Advanced Storage Interfaces
http://oss.oracle.com/~mkp/

http://oss.oracle.com/~mkp/



	PowerPoint Presentation
	Title of Presentation
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

